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MCMC Methods using SPDEs



example 1. The stochastic heat equation

∂tu(t, x) = ∂2xu(t, x) +
√

2 ∂tw(t, x)

with Dirichlet boundary conditions

u(t, 0) = 0, u(t, 1) = 0 ∀t > 0

has the distribution of a Brownian bridge on [0, 1] as its
stationary distribution.

I ∂tw is space-time white noise

I t ∈ [0,∞) is “time” of the SPDE

I x ∈ [0, 1] (“space” of the SPDE) is “time” of the
Brownian bridge.



example 2. Consider the stochastic partial differential equation (SPDE)

∂tu(t, x) = ∂2xu(t, x)−
(
gg ′ +

1

2
g ′′)
(
u(t, x)

)
+
√

2∂tw(t, x)

with Dirichlet boundary conditions

u(t, 0) = 0, u(t, 1) = 0 ∀t > 0.

I The stationary distribution of this SPDE on C
(
[0, 1],R

)
coincides

with the conditional distribution of the process X given by

dXτ = g(Xτ ) dτ + dWτ ∀τ ∈ [0, 1]

X0 = 0.

conditioned on X1 = 0.

I We can study X by studying x 7→ u(t, x) for large times t.



In general, we aim to construct SPDEs such that

I u(t, · ) ∈ C
(
[0, 1],R

)
for all t ≥ 0

I in stationarity, the paths x 7→ u(t, x) have the distribution of some
“interesting” process X , e.g. of a conditioned diffusion

I u is ergodic: for ϕ : C
(
[0, 1],R

)
→ R we have

E
(
ϕ(X )

)
= lim

T→∞

1

T

∫ T

0
ϕ
(
u(t, · )

)
dt

If we can solve the SPDE on a computer, this leads to Markov Chain
Monte Carlo (MCMC) methods: the process u generates samples of X
which we can use to study the distribution of X .

How to solve SPDEs on a computer?



We consider SPDEs of the form

∂tu(t, x) = ∂2xu(t, x) + f
(
u(t, x)

)
+
√

2 ∂tw(t, x)

where

I (t, x) ∈ [0,∞)× [0, 1],

I ∂tw is space-time white noise,

I the drift f : R→ R is a smooth function,

I the differential operator L = ∂2x is equipped with boundary
conditions such that it is a negative operator on the space
L2
(
[0, 1],R

)
.



Lemma. For f = 0, let ν be the stationary distribution of the linear
SPDE

∂tu(t, x) = ∂2xu(t, x) +
√

2 ∂tw(t, x).

Then ν coincides with the distribution of the process U given by

U(x) = (1− x)L + xR + B(x) ∀x ∈ [0, 1]

where

I B is a Brownian bridge, independent of L and R,

I L ∼ N (0, σ2L), R ∼ N (0, σ2R) with Cov(L,R) = σLR ,

I σ2L, σ2R , σLR are determined by the boundary conditions of L.



Lemma. For f = F ′ where F : R→ R is bounded from above, let µ be
the stationary distribution of the SPDE

∂tu(t, x) = ∂2xu(t, x) + f
(
u(t, x)

)
+
√

2 ∂tw(t, x).

Then µ satisfies

dµ

dν
(u) =

1

Z
exp
(∫ 1

0
F
(
u(x)

)
dx
)

where ν is the stationary distribution of the linear SPDE.

On Rd we know that the SDE

dXt = ∇ logϕ(Xt) dt +
√

2 dWt

has invariant density ϕ. The lemma is an infinite dimensional analogue of
this result.



Finite Element Discretisation



In this talk we only consider space discretisation of our SPDE.

I let ∆x = 1/n, n ∈ N
I consider x-values on the grid {0,∆x , . . . , (n − 1)∆x , 1}
I we use “hat functions” ϕi for i = 0, 1, . . . , n which have
ϕi (i ∆x) = 1, ϕi (j ∆x) = 0 for all j 6= i , and which are affine
between the grid points

Formally, expressing the solution in the basis ϕi as

u(t, x) =
∑
j

Uj(t)ϕj(x)

gives

〈ϕi ,
∑
j

dUj

dt
ϕj〉 = 〈ϕi , ∂

2
x

∑
j

Ujϕj〉+ 〈ϕi , f
(∑

j

Ujϕj

)
〉+
√

2〈ϕi ,
dw

dt
〉

where 〈 · , · 〉 denotes the L2-inner product. We will see that this is a
system of n + 1 SDEs.



〈ϕi ,
∑
j

dUj

dt
ϕj〉 = 〈ϕi , ∂

2
x

∑
j

Ujϕj〉+ 〈ϕi , f
(∑

j

Ujϕj

)
〉+
√

2〈ϕi ,
dw

dt
〉

can be written as

M
dU

dt
= LFEU + f FE(U) +

√
2M1/2 dW

dt

where

I the matrix LFE is defined by LFEij = 〈ϕi , ∂
2
xϕj〉,

I the matrix M is defined by Mij = 〈ϕi , ϕj〉,

I f FE(u)i =
〈
ϕi , f

( n∑
j=0

ujϕj

)〉
for all u ∈ Rn+1, i = 0, . . . , n.

I Cov
(
〈ϕi ,wt〉, 〈ϕj ,wt〉

)
= 〈ϕi , ϕj〉t.



By multiplication with M−1 we get the finite element discretisation:

dU

dt
= M−1LFEU + M−1f FE(U) +

√
2M−1/2

dW

dt

where

I W is an (n + 1)-dimensional standard Brownian motion

I LFE =
1

∆x

−1− α1
β1

∆x 1

1 −2 1
1 −1− α1

β1
∆x

 ∈ R(n+1)×(n+1)

I M = ∆x

2/6 1/6
1/6 4/6 1/6

1/6 2/6

 ∈ R(n+1)×(n+1)



Lemma. Let L ∈ Rd×d be symmetric, negative definite and G be
symmetric, positive definite. Then the SDEs

dU

dt
= LU + f (U) +

dW

dt

and
dU

dt
= GLU + G f (U) + G 1/2 dW

dt

have the same stationary distribution.

Using the lemma with G = M−1 shows that

dU

dt
= LFEU + f FE(U) +

√
2
dW

dt

has the same stationary distribution as the finite element discretisation.



We first consider the discretised equation for the case f = 0:

Lemma. Let L ∈ Rd×d be a matrix such that the real part of all
eigenvalues is strictly negative. Then the unique stationary distribution of

dU

dt
= LU + B

dW

dt

is N (0,C ), where the covariance matrix C solves the Lyapunov equation

LC + CLT = −BBT .

Thus, for f = 0, the stationary distribution is νn = N (0,CFE) where
CFE is the unique solution of LFECFE + CFELFE = −2I , i.e.
CFE = (−LFE)−1.



The stationary distribution µn for the discretised SPDE with f 6= 0 can
be found using the following lemma:

Lemma. Let f : Rn+1 → Rn+1 be a vector field with f = ∇F for some
F : Rn+1 → R. Then the SDE

dU = LU dt + f (U) dt +
√

2 dW

has stationary distribution µn with

dµn
dνn

(u) =
1

Zn
exp
(
F (u)

)
where νn is the stationary distribution of the linear equation and Zn is a
normalisation constant.

Once we show that f FE can be written as a gradient, the lemma allows
to find µn.



Discretisation Error



We have seen how to find

I the stationary distribution µ of the SPDE on C
(
[0, 1],R

)
I the stationary distribution µn of the discretised SPDE on Rn+1

We want to show µn → µ as n→∞.

questions. What metric to use? On which space?

Here we project everything to Rn+1: We define

Πn : C
(
[0, 1],R

)
→ Rn+1

by
Πnu =

(
u(0∆x), u(1∆x), . . . , u(n∆x)

)
.



Again, we start with the linear equation.

Lemma. For f = 0, let ν be the stationary distribution of the linear
SPDE

∂tu(t, x) = ∂2xu(t, x) +
√

2 ∂tw(t, x).

and let νn be the stationary distribution of the (linear) finite element
discretisation with f ≡ 0 on Rn+1. Then we have

νn = ν ◦ Π−1n

for every n ∈ N.

This shows that for the linear equation there is no discretisation error at
all!



Theorem. For f 6= 0, let µ be the stationary distribution of the SPDE
and let µn be the stationary distribution of the finite element
discretisation. Assume f = F ′ where F ∈ C 2(R) is bounded from above
with bounded second derivatives. Then we have∥∥µn − µ ◦ Π−1n

∥∥
TV

= O
(1

n

)
as n→∞

where ‖ · ‖TV denotes total-variation distance.

If µ and ν both have densities w.r.t. a common reference measure λ,
then the total variation distance can be computed as follows:

‖µ− ν‖TV =

∫ ∣∣dµ
dλ
− dν

dλ

∣∣ dλ.



Main Idea of the Proof



We want to compare

I the stationary distribution µ of the SPDE on C
(
[0, 1],R

)
I the stationary distribution µn of the discretised SPDE on Rn+1

Steps of the proof:

1. find a common space for both measures

2. rewrite the total variation distance using the densities

dµ

dν
=

1

Z
exp
(∫ 1

0

F
(
U(x)

)
dx
) dµn

dνn
=

1

Zn
exp
(∫ 1

0

F
(
Un(x)

)
dx
)

where U is distributed according to the stationary distribution ν and
Un =

∑n
j=0 U(j∆x)ϕj(t).

3. deal with the normalisation constants

4. compare the two exponentials



Using the above steps, the theorem can be reduced to the question how
fast ‖U − Un‖∞ converges to 0.

x

The difference U − Un is a chain of independent Brownian bridges, the
resulting questions are easy to answer.



Conclusion



I We have seen that∥∥µ ◦ Π−1n − µn
∥∥
TV

= O
(1

n

)
as n→∞.

One can show that this bound is sharp.

I Instead of projecting µ onto Rn+1 one can embed Rn+1 in
C
(
[0, 1],R

)
by interpolating the discretisation with Brownian

bridges. Nearly no changes are required in the proof and the result is
the same.

I One would expect for a similar result to hold for SPDEs with values
in Rd instead of in R (but notation will be more challenging).
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