The Stationary Distribution of Discretised SPDEs

Jochen Voss
University of Leeds

8th March 2012, CREST workshop, Beppu, Japan

Outline

MCMC Methods using SPDEs

Finite Element Discretisation

Discretisation Error

Main Idea of the Proof

MCMC Methods using SPDEs
example 1. The stochastic heat equation

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+\sqrt{2} \partial_{t} w(t, x)
$$

with Dirichlet boundary conditions

$$
u(t, 0)=0, \quad u(t, 1)=0 \quad \forall t>0
$$

has the distribution of a Brownian bridge on $[0,1]$ as its stationary distribution.

- $\partial_{t} w$ is space-time white noise
- $t \in[0, \infty)$ is "time" of the SPDE
- $x \in[0,1]$ ("space" of the SPDE) is "time" of the Brownian bridge.

example 2. Consider the stochastic partial differential equation (SPDE)

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)-\left(g g^{\prime}+\frac{1}{2} g^{\prime \prime}\right)(u(t, x))+\sqrt{2} \partial_{t} w(t, x)
$$

with Dirichlet boundary conditions

$$
u(t, 0)=0, \quad u(t, 1)=0 \quad \forall t>0
$$

- The stationary distribution of this SPDE on $C([0,1], \mathbb{R})$ coincides with the conditional distribution of the process X given by

$$
\begin{aligned}
d X_{\tau} & =g\left(X_{\tau}\right) d \tau+d W_{\tau} \quad \forall \tau \in[0,1] \\
X_{0} & =0
\end{aligned}
$$

conditioned on $X_{1}=0$.

- We can study X by studying $x \mapsto u(t, x)$ for large times t.

In general, we aim to construct SPDEs such that

- $u(t, \cdot) \in C([0,1], \mathbb{R})$ for all $t \geq 0$
- in stationarity, the paths $x \mapsto u(t, x)$ have the distribution of some "interesting" process X, e.g. of a conditioned diffusion
- u is ergodic: for $\varphi: C([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ we have

$$
\mathbb{E}(\varphi(X))=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \varphi(u(t, \cdot)) d t
$$

If we can solve the SPDE on a computer, this leads to Markov Chain Monte Carlo (MCMC) methods: the process u generates samples of X which we can use to study the distribution of X.

How to solve SPDEs on a computer?

We consider SPDEs of the form

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+f(u(t, x))+\sqrt{2} \partial_{t} w(t, x)
$$

where

- $(t, x) \in[0, \infty) \times[0,1]$,
- $\partial_{t} w$ is space-time white noise,
- the drift $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function,
- the differential operator $\mathcal{L}=\partial_{x}^{2}$ is equipped with boundary conditions such that it is a negative operator on the space $L^{2}([0,1], \mathbb{R})$.

Lemma. For $f=0$, let ν be the stationary distribution of the linear SPDE

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+\sqrt{2} \partial_{t} w(t, x) .
$$

Then ν coincides with the distribution of the process U given by

$$
U(x)=(1-x) L+x R+B(x) \quad \forall x \in[0,1]
$$

where

- B is a Brownian bridge, independent of L and R,
- $L \sim \mathcal{N}\left(0, \sigma_{L}^{2}\right), R \sim \mathcal{N}\left(0, \sigma_{R}^{2}\right)$ with $\operatorname{Cov}(L, R)=\sigma_{L R}$,
- $\sigma_{L}^{2}, \sigma_{R}^{2}, \sigma_{L R}$ are determined by the boundary conditions of \mathcal{L}.

Lemma. For $f=F^{\prime}$ where $F: \mathbb{R} \rightarrow \mathbb{R}$ is bounded from above, let μ be the stationary distribution of the SPDE

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+f(u(t, x))+\sqrt{2} \partial_{t} w(t, x)
$$

Then μ satisfies

$$
\frac{d \mu}{d \nu}(u)=\frac{1}{Z} \exp \left(\int_{0}^{1} F(u(x)) d x\right)
$$

where ν is the stationary distribution of the linear SPDE.

On \mathbb{R}^{d} we know that the SDE

$$
d X_{t}=\nabla \log \varphi\left(X_{t}\right) d t+\sqrt{2} d W_{t}
$$

has invariant density φ. The lemma is an infinite dimensional analogue of this result.

Finite Element Discretisation

In this talk we only consider space discretisation of our SPDE.

- let $\Delta x=1 / n, n \in \mathbb{N}$
- consider x-values on the grid $\{0, \Delta x, \ldots,(n-1) \Delta x, 1\}$
- we use "hat functions" φ_{i} for $i=0,1, \ldots, n$ which have $\varphi_{i}(i \Delta x)=1, \varphi_{i}(j \Delta x)=0$ for all $j \neq i$, and which are affine between the grid points

Formally, expressing the solution in the basis φ_{i} as

$$
u(t, x)=\sum_{j} U_{j}(t) \varphi_{j}(x)
$$

gives

$$
\left\langle\varphi_{i}, \sum_{j} \frac{d U_{j}}{d t} \varphi_{j}\right\rangle=\left\langle\varphi_{i}, \partial_{x}^{2} \sum_{j} U_{j} \varphi_{j}\right\rangle+\left\langle\varphi_{i}, f\left(\sum_{j} U_{j} \varphi_{j}\right)\right\rangle+\sqrt{2}\left\langle\varphi_{i}, \frac{d w}{d t}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ denotes the L^{2}-inner product. We will see that this is a system of $n+1$ SDEs.

$$
\left\langle\varphi_{i}, \sum_{j} \frac{d U_{j}}{d t} \varphi_{j}\right\rangle=\left\langle\varphi_{i}, \partial_{x}^{2} \sum_{j} U_{j} \varphi_{j}\right\rangle+\left\langle\varphi_{i}, f\left(\sum_{j} U_{j} \varphi_{j}\right)\right\rangle+\sqrt{2}\left\langle\varphi_{i}, \frac{d w}{d t}\right\rangle
$$

can be written as

$$
M \frac{d U}{d t}=L^{\mathrm{FE}} U+f^{\mathrm{FE}}(U)+\sqrt{2} M^{1 / 2} \frac{d W}{d t}
$$

where

- the matrix L^{FE} is defined by $L_{i j}^{\mathrm{FE}}=\left\langle\varphi_{i}, \partial_{x}^{2} \varphi_{j}\right\rangle$,
- the matrix M is defined by $M_{i j}=\left\langle\varphi_{i}, \varphi_{j}\right\rangle$,
- $f^{\mathrm{FE}}(u)_{i}=\left\langle\varphi_{i}, f\left(\sum_{j=0}^{n} u_{j} \varphi_{j}\right)\right\rangle$ for all $u \in \mathbb{R}^{n+1}, i=0, \ldots, n$.
- $\operatorname{Cov}\left(\left\langle\varphi_{i}, w_{t}\right\rangle,\left\langle\varphi_{j}, w_{t}\right\rangle\right)=\left\langle\varphi_{i}, \varphi_{j}\right\rangle t$.

By multiplication with M^{-1} we get the finite element discretisation:

$$
\frac{d U}{d t}=M^{-1} L^{\mathrm{FE}} U+M^{-1} f^{\mathrm{FE}}(U)+\sqrt{2} M^{-1 / 2} \frac{d W}{d t}
$$

where

- W is an $(n+1)$-dimensional standard Brownian motion
- $L^{\mathrm{FE}}=\frac{1}{\Delta x}\left(\begin{array}{ccc}-1-\frac{\alpha_{1}}{\beta_{1}} \Delta x & 1 & \\ 1 & -2 & 1 \\ & 1 & -1-\frac{\alpha_{1}}{\beta_{1}} \Delta x\end{array}\right) \in \mathbb{R}^{(n+1) \times(n+1)}$
- $M=\Delta x\left(\begin{array}{lll}2 / 6 & 1 / 6 & \\ 1 / 6 & 4 / 6 & 1 / 6 \\ & 1 / 6 & 2 / 6\end{array}\right) \in \mathbb{R}^{(n+1) \times(n+1)}$

Lemma. Let $L \in \mathbb{R}^{d \times d}$ be symmetric, negative definite and G be symmetric, positive definite. Then the SDEs

$$
\frac{d U}{d t}=L U+f(U)+\frac{d W}{d t}
$$

and

$$
\frac{d U}{d t}=G L U+G f(U)+G^{1 / 2} \frac{d W}{d t}
$$

have the same stationary distribution.

Using the lemma with $G=M^{-1}$ shows that

$$
\frac{d U}{d t}=L^{\mathrm{FE}} U+f^{\mathrm{FE}}(U)+\sqrt{2} \frac{d W}{d t}
$$

has the same stationary distribution as the finite element discretisation.

We first consider the discretised equation for the case $f=0$:

Lemma. Let $L \in \mathbb{R}^{d \times d}$ be a matrix such that the real part of all eigenvalues is strictly negative. Then the unique stationary distribution of

$$
\frac{d U}{d t}=L U+B \frac{d W}{d t}
$$

is $\mathcal{N}(0, C)$, where the covariance matrix C solves the Lyapunov equation

$$
L C+C L^{T}=-B B^{T} .
$$

Thus, for $f=0$, the stationary distribution is $\nu_{n}=\mathcal{N}\left(0, C^{\mathrm{FE}}\right)$ where C^{FE} is the unique solution of $L^{\mathrm{FE}} C^{\mathrm{FE}}+C^{\mathrm{FE}} L^{\mathrm{FE}}=-21$, i.e. $C^{\mathrm{FE}}=\left(-L^{\mathrm{FE}}\right)^{-1}$.

The stationary distribution μ_{n} for the discretised SPDE with $f \neq 0$ can be found using the following lemma:

Lemma. Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ be a vector field with $f=\nabla F$ for some $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$. Then the SDE

$$
d U=L U d t+f(U) d t+\sqrt{2} d W
$$

has stationary distribution μ_{n} with

$$
\frac{d \mu_{n}}{d \nu_{n}}(u)=\frac{1}{Z_{n}} \exp (F(u))
$$

where ν_{n} is the stationary distribution of the linear equation and Z_{n} is a normalisation constant.

Once we show that f^{FE} can be written as a gradient, the lemma allows to find μ_{n}.

Discretisation Error

We have seen how to find

- the stationary distribution μ of the SPDE on $C([0,1], \mathbb{R})$
- the stationary distribution μ_{n} of the discretised SPDE on \mathbb{R}^{n+1}

We want to show $\mu_{n} \rightarrow \mu$ as $n \rightarrow \infty$.
questions. What metric to use? On which space?
Here we project everything to \mathbb{R}^{n+1} : We define

$$
\Pi_{n}: C([0,1], \mathbb{R}) \rightarrow \mathbb{R}^{n+1}
$$

by

$$
\Pi_{n} u=(u(0 \Delta x), u(1 \Delta x), \ldots, u(n \Delta x))
$$

Again, we start with the linear equation.

Lemma. For $f=0$, let ν be the stationary distribution of the linear SPDE

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+\sqrt{2} \partial_{t} w(t, x)
$$

and let ν_{n} be the stationary distribution of the (linear) finite element discretisation with $f \equiv 0$ on \mathbb{R}^{n+1}. Then we have

$$
\nu_{n}=\nu \circ \Pi_{n}^{-1}
$$

for every $n \in \mathbb{N}$.

This shows that for the linear equation there is no discretisation error at all!

Theorem. For $f \neq 0$, let μ be the stationary distribution of the SPDE and let μ_{n} be the stationary distribution of the finite element discretisation. Assume $f=F^{\prime}$ where $F \in C^{2}(\mathbb{R})$ is bounded from above with bounded second derivatives. Then we have

$$
\left\|\mu_{n}-\mu \circ \Pi_{n}^{-1}\right\|_{\mathrm{TV}}=O\left(\frac{1}{n}\right) \quad \text { as } n \rightarrow \infty
$$

where $\|\cdot\|_{\text {TV }}$ denotes total-variation distance.

If μ and ν both have densities w.r.t. a common reference measure λ, then the total variation distance can be computed as follows:

$$
\|\mu-\nu\|_{\mathrm{TV}}=\int\left|\frac{d \mu}{d \lambda}-\frac{d \nu}{d \lambda}\right| d \lambda
$$

Main Idea of the Proof

We want to compare

- the stationary distribution μ of the SPDE on $C([0,1], \mathbb{R})$
- the stationary distribution μ_{n} of the discretised SPDE on \mathbb{R}^{n+1}

Steps of the proof:

1. find a common space for both measures
2. rewrite the total variation distance using the densities

$$
\frac{d \mu}{d \nu}=\frac{1}{Z} \exp \left(\int_{0}^{1} F(U(x)) d x\right) \quad \frac{d \mu_{n}}{d \nu_{n}}=\frac{1}{Z_{n}} \exp \left(\int_{0}^{1} F\left(U_{n}(x)\right) d x\right)
$$

where U is distributed according to the stationary distribution ν and $U_{n}=\sum_{j=0}^{n} U(j \Delta x) \varphi_{j}(t)$.
3. deal with the normalisation constants
4. compare the two exponentials

Using the above steps, the theorem can be reduced to the question how fast $\left\|U-U_{n}\right\|_{\infty}$ converges to 0 .

The difference $U-U_{n}$ is a chain of independent Brownian bridges, the resulting questions are easy to answer.

Conclusion

- We have seen that

$$
\left\|\mu \circ \Pi_{n}^{-1}-\mu_{n}\right\|_{\mathrm{TV}}=O\left(\frac{1}{n}\right) \quad \text { as } n \rightarrow \infty
$$

One can show that this bound is sharp.

- Instead of projecting μ onto \mathbb{R}^{n+1} one can embed \mathbb{R}^{n+1} in $C([0,1], \mathbb{R})$ by interpolating the discretisation with Brownian bridges. Nearly no changes are required in the proof and the result is the same.
- One would expect for a similar result to hold for SPDEs with values in \mathbb{R}^{d} instead of in \mathbb{R} (but notation will be more challenging).

